A New Method for Determining Overlapped High-and-Low Clouds and Their Optical Properties Using MODIS Data

Fu-Lung Chang (1) & Zhanqing Li (1,2)

(1) Earth System Science Interdisciplinary Center(2) Department of MeteorologyUniversity of Maryland, College Park, MD 20742

2nd CERES-II Science Team Meeting, Williamsburg, VA, Nov 2-4 2004

Outline

- θ Comparisons of three different cloud retrieval methods
- The MODIS cloud top properties and optical depth products.
- A conventional infrared-visible (IR-VIS) bi-spectral method like the ISCCP.
- A new dual-layer overlapped method for determining overlapped high-and-low cloud on a pixel scale, including both its high-cloud optical depth (τ_{hc}) and top altitude (P_{hc}/T_{hc}) and its low-cloud optical depth (τ_{lc}) and top altitude (P_{lc}/T_{lc}) .
- θ Demonstration, application, and verification of the dual-layer overlapped retrieval algorithm.

a) $11-\mu m$ brightness temperature

c) Cloud visible optical depth

Motivation (continued)

The MODIS Products of Cloud Top Pressure and Optical Depth

- A CO₂-slicing cloud top pressure is retrieved for high to mid clouds (< 700 hPa)
- Cloud top pressure for low cloud (> 700 hPa) is retrieved from the 11-μm IR channel.
- Cloud column optical depth is retrieved from the VIS (e.g., 0.64-μm) channel.
- A single-layer cloud assumption is made in the retrievals.

The ISCCP-like Bi-spectral IR-VIS Cloud Retrieval Method

- Cloud top pressure is retrieved from the IR 11-μm channel;
- Cloud column optical depth is retrieved from the VIS (e.g., 0.64-μm) channel.
- A single-layer cloud assumption is made in the retrievals.

More Motivation for This Study

When such cirrus cloud overlapping occurs, a very high cirrus cloud top can be detected by the CO_2 -slicing method. Meanwhile, the satellite-observed 11- μ m thermal emission is dominated by the low cloud and transmits through the thin cirrus, which can be combined with the CO_2 -slicing retrieved cirrus T_{hc} to determine the cirrus IR emissivity (ε).

Dual-layer IR Radiation Model

MODIS-observed 11-µm radiance

R

High cirrus cloud: T_{hc} , ε_{hc} , τ_{hc}

Low water cloud: T_{lc} , ε_{lc} , τ_{lc}

Surface background

$$\varepsilon_{hc} = \frac{R - R'}{B(T_{hc}) - R'}$$

In our dual-layer model:

$$R' = \varepsilon_{lc} B(T_{lc}) + (1 - \varepsilon_{lc}) R_{clr}$$

In conventional single-layer model:

$$R' = R_{clr}$$

$$\tau_{hc,IR} = -\mu \ln(1 - \varepsilon_{hc})$$

$$\tau_{hc} = \xi \tau_{hc,IR}$$

$$\tau_{hc} = \xi \tau_{hc,IR}$$

Schematic Diagram of our Dual-layer IR and VIS Retrieval Algorithm

Dual-layer VIS Radiation Model

MODIS-observed 0.64-μm radiance

 \Longrightarrow

R

 \uparrow

High cirrus cloud: P_{hc} , τ_{hc}

Low water cloud: P_{lc} , τ_{lc}

Surface background

- Use known τ_{hc} , P_{hc} , and P_{lc} to retrieve τ_{lc} by comparing the MODIS-observed VIS reflectance to lookup-table reflectances generated using the dual-layer model.
- Various sets of lookup tables are generated with: P_{hc} = 100, 300, 500 hPa, τ_{hc} = 0.01, 0.25, 0.5, 1, 2, 3, 5, P_{lc} = 500, 700, 900, 1000 hPa, τ_{lc} = 0.05, 1, 2, 3, 4, ... 100.
- An ice poly-crystal model (r_e = 30 μ m) for high cirrus cloud; and a water-cloud model (r_e = 10 μ m) for low cloud.

Schematic Flow Chart for the Retrieval Procedure

Dual-layer Retrieval Application and Demonstration

θ The MODIS granule (5-minute segment) is obtained on April 2, 2001 (1715 UTC).

Dual-layer Retrievals of High and Low Cloud Temperatures

Dual-layer Retrievals of High and Low Cloud Optical Depths

Analysis of the Dual-layer Cloud Properties

The dotted line is for $\tau_{tot} = \tau_{hc} + E_{tot}$

Schematic Flow Chart for the Retrieval Procedure

Analysis of the Single-layer Cloud Properties

θ A single-layer cloud system observed on March 6, 2001 (1735 UTC) over SGP site.

The dotted line is for $\tau_{tot} = \tau_{hc} + E_{tot}$

Comparisons of the Retrieved Single-layer Cloud Optical Depths

Dual-layer Retrieval Application and Demonstration

θ The MODIS granule (5-minute segment) is obtained on April 2, 2001 (1715 UTC).

Verification of the Dual-layer Cloud System

The ARM Active Remote-Sensed Cloud Locations (ARSCL) Value-Added Product (Clothiaux et al. 2000) retrieves cloud boundaries from combined measurements of a 35-GHz millimeter-wave cloud radar (MMCR), a vertical-pointing laser ceilometer, a microwave radiometer, and a micropulse lidar.

The MMCR reflectivity data (J. Mace, University of Utah)

Implication of Three Different Retrieval Algorithms (from the overlapped cloud pixels)

Implication of Three Different Retrieval Algorithms (from the global cloud pixels)

Total High Cloud Amount (Single-layer + Overlapped + Thick)

Overlapped Cloud Amount

Mid Cloud Amount

Total Low Cloud Amount (Single-layer + Overlapped)

Distributions of Cloud Amounts for Different Cloud Types

Latitudinal Distributions of the Retrieved Cloud Properties

Comparisons of Global Cloud Layer Statistics with GLAS Data

Cumulative frequency of global cloud layer detected by GLAS lidar (courtesy of James Spinhirne, NASA GSFC)

- From the space-borne
 Geoscience Laser
 Altimeter System (GLAS)
 data, single and two-layer
 clouds account for ~90%
 of all clouds.
- Their results:
 35% of clouds are multilayer clouds
- Our results: 28% of clouds are duallayer clouds

Estimation of Cloud Vertical Structure

Cloud layer profiles derived for a meridional band at between 117.5°W-120°W.

$$Z_{Top} - Z_{Base} = a + bT_c + c\tau_c^{\alpha}$$

Dual-layer Retrieval Analysis

Dual-layer Retrievals of High and Low Cloud Temperatures

Dual-layer Retrievals of High and Low Cloud Optical Depths

